Improved Rainfall Prediction through Nonlinear Autoregressive Network with Exogenous Variables: A Case Study in Andes High Mountain Region

Author:

Peña Mario12,Vázquez-Patiño Angel34,Zhiña Darío5,Montenegro Martin5,Avilés Alex5ORCID

Affiliation:

1. Dirección de Investigación (DIUC), Universidad de Cuenca, Campus Central, Av. 12 de Abril s/n y Loja 010203, Cuenca, Ecuador

2. Departamento de Química Aplicada y Sistemas de Producción, Facultad de Ciencias Químicas, Universidad de Cuenca, Campus Central, Av. 12 de Abril S/n y Loja 010203, Cuenca, Ecuador

3. Facultad de Ingeniería, Universidad de Cuenca, Av. 12 de Abril S/n y Loja 010203, Cuenca, Ecuador

4. Departamento de Ingeniería Civil, Universidad de Cuenca, Av. 12 de Abril S/n y Loja 010203, Cuenca, Ecuador

5. Carrera de Ingeniería Ambiental, Facultad de Ciencias Químicas, Universidad de Cuenca, Campus Central, Av. 12 de Abril S/n y Loja 010203, Cuenca, Ecuador

Abstract

Precipitation is the most relevant element in the hydrological cycle and vital for the biosphere. However, when extreme precipitation events occur, the consequences could be devastating for humans (droughts or floods). An accurate prediction of precipitation helps decision-makers to develop adequate mitigation plans. In this study, linear and nonlinear models with lagged predictors and the implementation of a nonlinear autoregressive model with exogenous variables (NARX) network were used to predict monthly rainfall in Labrado and Chirimachay meteorological stations. To define a suitable model, ridge regression, lasso, random forest (RF), support vector machine (SVM), and NARX network were used. Although the results were “unsatisfactory” with the linear models, the specific direct influences of variables such as Niño 1 + 2, Sahel rainfall, hurricane activity, North Pacific Oscillation, and the same delayed rainfall signal were identified. RF and SVM also demonstrated poor performance. However, RF had a better fit than linear models, and SVM has a better fit than RF models. Instead, the NARX model was trained using several architectures to identify an optimal one for the best prediction twelve months ahead. As an overall evaluation, the NARX model showed “good” results for Labrado and “satisfactory” results for Chirimachay. The predictions yielded by NARX models, for the first six months ahead, were entirely accurate. This study highlighted the strengths of NARX networks in the prediction of chaotic and nonlinear signals such as rainfall in regions that obey complex processes. The results would serve to make short-term plans and give support to decision-makers in the management of water resources.

Funder

University of Cuenca

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3