Predicting Summer Precipitation Anomalies in the Yunnan–Guizhou Plateau Using Spring Sea-Surface Temperature Anomalies

Author:

Tuo Ya123,Qiao Panjie4ORCID,Liu Wenqi4ORCID,Li Qingquan3ORCID

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200437, China

2. Chinese Academy of Meteorological Sciences, Beijing 100081, China

3. China Meteorological Administration Key Laboratory for Climate Prediction Studies, National Climate Centre, Beijing 100081, China

4. Data Science Research Center, Faculty of Science, Kunming University of Science and Technology, Kunming 650032, China

Abstract

By constructing a correlation network between global sea surface temperature anomalies (SSTAs) and summer precipitation anomalies in the Yunnan–Guizhou Plateau, key SST regions influencing summer precipitation anomalies in the Yunnan–Guizhou Plateau were selected. It was found that spring SSTAs in the Bay of Bengal, southwestern Atlantic, and eastern Pacific are crucial for influencing summer precipitation anomalies in the Yunnan–Guizhou Plateau. Setting SSTAs from these three regions as predictor variables 3 months in advance, we constructed multiple linear regression (MLR), ridge regression (RR), and lasso regression (LR) models to predict summer precipitation anomalies over the Yunnan–Guizhou region. The training phase involved data spanning from 1961 to 2005, which aimed to predict precipitation anomalies in the Yunnan–Guizhou Plateau for the period extending from 2006 to 2022. Based on MLR, RR, and LR models, the correlations between predicted values and observed summer precipitation anomalies in Yunnan–Guizhou were 0.48, 0.46, and 0.46, respectively. These values were all higher than the correlation coefficients of the NCC_CSM model’s predicted and observed values. Additionally, its performance in predicting summer precipitation anomalies over the Yunnan–Guizhou region, based on key SST regions, was assessed using performance metrics such as anomaly correlation coefficient (ACC), anomaly sign consistency rate (PC), and trend anomaly comprehensive score (PS score). The average ACC of MLR, RR, and LR models was higher than that of the NCC_CSM model’s predictions. For MLR, RR, LR, and NCC_CSM models, the PCs exceeding 50% of the year were 14, 14, 11, and 10, respectively. Furthermore, the average PS score for predicting summer precipitation anomalies over the Yunnan–Guizhou region using MLR, RR, and LR was approximately 73 points; 8 higher than the average PS score of the NCC_CSM model. Therefore, predicting summer precipitation anomalies over the Yunnan–Guizhou region based on key SST regions is of great significance for improving the prediction skills of precipitation anomalies in this region.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China Project

Natural Science Research Project of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3