Spatial-Temporal ARX Modeling and Optimization for Polymer Flooding

Author:

Ge Yulei1,Li Shurong1,Lu Songlin1,Chang Peng1,Lei Yang2

Affiliation:

1. College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China

2. Fujian Metrology Institute, Fuzhou 350003, China

Abstract

A new polymer flooding model based on spatial-temporal decomposition and autoregressive model with external input (ARX) (STDARX model) is proposed. Karhunen-Loeve (K-L) decomposition is used to model the two-dimensional state parameters of reservoir (such as water saturation, pressure, and grid concentration). The polymer injection concentration and time coefficient got from the decomposition are taken as the input and output information. After being identified by least square method, the time iterative ARX models of all state variables are obtained, we build the ARX model among pressure, water saturation, grid concentration, and moisture content of production well, and identify it with recursive least-squares (RLS) method. After combining the above two models, we get the STDARX model of polymer flooding. The accuracy is proved by model with four injection wells and nine production wells through data which is obtained from mechanism model. In order to enhance the polymer flooding oil recovery when oil price is changing, iterative dynamic programming (IDP) is applied to optimize the STDARX model, to get the optimal injection of production scheme.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3