Enhanced Oil Recovery for ASP Flooding Based on Biorthogonal Spatial-Temporal Wiener Modeling and Iterative Dynamic Programming

Author:

Li Shurong1ORCID,Ge Yulei2ORCID,Shi Yuhuan3ORCID

Affiliation:

1. Automation School, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China

3. CNPC EastChina Design Institute Co. Ltd., Qingdao 266071, China

Abstract

Because of the mechanism complexity, coupling, and time-space characteristic of alkali-surfactant-polymer (ASP) flooding, common methods are very hard to be implemented directly. In this paper, an iterative dynamic programming (IDP) based on a biorthogonal spatial-temporal Wiener modeling method is developed to solve the enhanced oil recovery for ASP flooding. At first, a comprehensive mechanism model for the enhanced oil recovery of ASP flooding is introduced. Then the biorthogonal spatial-temporal Wiener model is presented to build the relation between inputs and states, in which the Wiener model is expanded on a set of spatial basis functions and temporal basis functions. After inferring the necessary condition of solutions, these basis functions are determined by the snapshot method. Furthermore, a theorem is proved to identify parameters in the Wiener model. Combined with the least square estimation (LSE), all unknown parameters are determined. In addition, the ARMA model is applied to build the model between states and outputs, whose parameters are identified by recursive least squares (RLS). Thus, the whole modeling process for ASP flooding is finished. At last, the IDP algorithm is applied to solve the enhanced oil recovery problem for ASP flooding based on the identification model to obtain the optimal injection strategy. Simulations on the ASP flooding with four injection wells and nine production wells show the accuracy and effectiveness of the proposed method.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3