Tensile Properties of Three Selected Collagen Membranes

Author:

Raz Perry1ORCID,Brosh Tamar2,Ronen Guy3,Tal Haim1

Affiliation:

1. Department of Periodontology and Oral Implants, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

2. Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

3. The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract

Background. Biological barriers are commonly used to treat alveolar bone defects and guide tissue regeneration. Understanding the biological and mechanical properties of the available membranes is crucial for selecting the one that is optimal for enhancing clinical outcomes.Purpose. To evaluate the mechanical behavior of three different collagen membranes to increasing tensile force in dry and wet conditions.Materials and Methods. Three commercially collagen membranes were selected for analysis: Bio-Gide® (Geistlich Biomaterials, Baden-Baden, Germany), Remaix™ (RX; Matricel GmbH, Herzogenrath, Germany), and Ossix Plus® (Datum Dental Biotech, Lod, Israel). Increasing tensile forces were applied on 10 dry and wet membranes of standard size via a loading machine. Force and extension values were acquired up to maximum load before failure, and maximum stress, maximum extension, and amount of energy needed for membrane tearing were analyzed. Membranes’ densities were also calculated.Results. The Remaix membrane exhibited the highest values of maximum load tensile strength, maximum extension, and maximum energy required for membrane tearing, followed by Bio-Gide. Ossix Plus had the lowest scores in all these parameters. Dry membranes had the highest scores for all parameters except extension. Membrane density was directly and significantly correlated with all tested parameters.Conclusions. The study was undertaken to provide clinicians with data upon which to base the selection of collagen membranes in order to achieve optimal clinical results. It emerged that the mechanical properties of dry and wet collagen membranes were significantly different from one another. Among the 3 tested membranes, Remaix exhibited higher performance results in all the mechanical tests. Collagen membrane density seems to have a significant influence upon mechanical resistance. These findings may also guide manufacturers in improving the quality of their product.

Funder

Tel Aviv University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3