Roadway rock burst prediction based on catastrophe theory

Author:

Pan Wang,Shuan-Cheng Gu,Wei Sun

Abstract

AbstractIn order to quantitatively calculate the critical depth and critical load of mines affected by rock burst, and to achieve effective prevention and control of rock burst in coal mines, this paper proposes a mechanical model for predicting the occurrence of rock burst in coal mine roadways based on catastrophe theory. Additionally, a theoretical calculation formula for initiating rock burst is derived. The first step was to establish a mechanical analysis model, which directly correlated with the in-situ stress, physical and mechanical characteristics of the coal-rock mass, and engineering structural parameters. Following this, a mechanical instability criterion was derived for the key load-bearing circle within the surrounding rock of the roadway. In the final step, the critical depth and load for rock burst initiation were verified for 25 distinct coal mines in China that were prone to rock burst hazards. The research results demonstrate that the discrepancy between the theoretically calculated critical depth and the actual measured statistical values was less than 35%. In addition, the difference between the theoretically determined critical depth and the value calculated by Pan Yishan was less than 32%. Notably, the ratio of the theoretically calculated critical load to the uniaxial compressive strength of the coal-rock mass ranged from 0.38 to 1.93. This aligns with empirical data on rock burst occurrences, as set out in the engineering classification standards for rock masses. These research outcomes substantiated the practical utility of the proposed theory, thereby laying a robust theoretical groundwork for the quantitative control of rock burst.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Ding, B. C. Features and prevention countermeasures of major disasters occurred in China coal mine. J. Coal Sci. Technol. 45(05), 109–114 (2017).

2. Qi, Q.X. & Dou, L.M. Rock Burst Theory and Technology. (China University of Mining and Technology Press, 2008).

3. Pan, Y. S. Coal mine rock burst (Science Press, 2018).

4. Pan, Y. S. & Wang, A. W. Disturbance response instability theory of rock bursts in coal mines and its application. J. Geohazard Mech. 1(1), 1–17 (2023).

5. Xie, Z. W. et al. Experimental study on the atomization characteristics and dust removal efficiency of a fan-shaped nozzle for purifying working environment. J. Sci. Total Environ. 894, 164994–164994 (2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3