Affiliation:
1. Communications and Transport Systems, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden
2. The Swedish National Road and Transport Research Institute, Linköping SE-581 95, Sweden
Abstract
In large urban areas, the estimation of vehicular traffic emissions is commonly based on the outputs of transport planning models, such as Static Traffic Assignment (STA) models. However, such models, being used in a strategic context, imply some important simplifications regarding the variation of traffic conditions, and their outputs are heavily aggregated in time. In addition, dynamic traffic flow phenomena, such as queue spillback, cannot be captured, leading to inaccurate modelling of congestion. As congestion is strongly correlated with increased emission rates, using STA may lead to unreliable emission estimations. The first objective of this paper is to identify the errors that STA models introduce into an emission estimation. Then, considering the type and the nature of the errors, our aim is to suggest potential solutions. According to our findings, the main errors are related to STA inability of accurately modelling the level and the location of congestion. For this reason, we suggest and evaluate the postprocessing of STA outputs through quasidynamic network loading. Then, we evaluate our suggested approach using the HBEFA emission factors and a 19 km long motorway segment in Stockholm as a case study. Although, in terms of total emissions, the differences compared to the simple static case are not so vital, the postprocessor performs better regarding the spatial distribution of emissions. Considering the location-specific effects of traffic emissions, the latter may lead to substantial improvements in applications of emission modelling such as dispersion, air quality, and exposure modelling.
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献