Flow count data-driven static traffic assignment models through network modularity partitioning

Author:

Roocroft AlexanderORCID,Punzo Giuliano,Ramli Muhamad Azfar

Abstract

AbstractAccurate static traffic assignment models are important tools for the assessment of strategic transportation policies. In this article we present a novel approach to partition road networks through network modularity to produce data-driven static traffic assignment models from loop detector data on large road systems. The use of partitioning allows the estimation of the key model input of Origin–Destination demand matrices from flow counts alone. Previous network tomography-based demand estimation techniques have been limited by the network size. The amount of partitioning changes the Origin–Destination estimation optimisation problems to different levels of computational difficulty. Different approaches to utilising the partitioning were tested, one which degenerated the road network to the scale of the partitions and others which left the network intact. Applied to a subnetwork of England’s Strategic Road Network and other test networks, our results for the degenerate case showed flow and travel time errors are reasonable with a small amount of degeneration. The results for the non-degenerate cases showed that similar errors in model prediction with lower computation requirements can be obtained when using large partitions compared with the non-partitioned case. This work could be used to improve the effectiveness of national road systems planning and infrastructure models.

Funder

University of Sheffield

A*STAR

Publisher

Springer Science and Business Media LLC

Subject

Transportation,Development,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3