Synthesis and Evaluation of a Water-Soluble Hyperbranched Polymer as Enhanced Oil Recovery Chemical

Author:

Lai Nanjun12ORCID,Qin Xiaoping13ORCID,Ye Zhongbin12ORCID,Peng Qin2ORCID,Zhang Yan2ORCID,Ming Zheng2ORCID

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

2. College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China

3. College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China

Abstract

A novel hyperbranched polymer was synthesized using acrylamide (AM), acrylic acid (AA),N-vinyl-2-pyrrolidone (NVP), and dendrite functional monomer as raw materials by redox initiation system in an aqueous medium. The hyperbranched polymer was characterized by infrared (IR) spectroscopy,1H NMR spectroscopy,13C NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM). The viscosity retention rate of the hyperbranched polymer was 22.89% higher than that of the AM/AA copolymer (HPAM) at 95°C, and the viscosity retention rate was 8.17%, 12.49%, and 13.68% higher than that of HPAM in 18000 mg/L NaCl, 1800 mg/L CaCl2, and 1800 mg/L MgCl2·6H2O brine, respectively. The hyperbranched polymer exhibited higher apparent viscosity (25.2 mPa·s versus 8.1 mPa·s) under 500 s−1shear rate at 80°C. Furthermore, the enhanced oil recovery (EOR) of 1500 mg/L hyperbranched polymer solutions was up to 23.51% by the core flooding test at 80°C.

Funder

Southwest Petroleum University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3