Synthesis, Characterization, and Properties of a Novel Hyperbranched Polymers with Polyacrylamide Side Chains

Author:

Qin Xiaoping1,Wang Qianwen1,Tang Peng12,Yang Hui3,Li Cuixia1,Yang Xiaoliang3,Peng Tong3

Affiliation:

1. School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China

2. Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-Utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No.29, 13th Street, Binhai New District, Tianjin 300457, China

3. Jidong Oilfield Branch Company, PetroChina Company Limited, Tangshan 063002, China

Abstract

A novel hyperbranched polymer with polyacrylamide side chains (HAPAM) was synthesized by aqueous solution polymerization using acrylic acid, acrylamide, 2-acrylamido-2-methyl-1-propanesulfonic acid, hydrophobic monomer of dimethyl octadecyl ammonium chloride, and the homemade skeleton monomer of modified-M2.0 as raw materials and (NH4)2S2O8-NaHSO3 as initiator. The molecular structure, functional groups, and surface morphology of HAPAM were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance hydrogen spectroscopy, and scanning electron microscopy. It was found that the performance of HAPAM solution was higher than that of ordinary polyacrylamide solution in terms of thickening ability, shearing resistance, thermal endurance, salt-resistance, resistance-coefficient and residual-resistance-coefficient, ability to reduce interfacial tension between polymer solution and crude oil, and oil-displacement-efficiency. In particular, the enhanced oil recovery of the HAPAM solution was 13.03%, and the improvement of shearing resistance and immunity to chromatographic separation were simultaneously achieved by the HAPAM solution. These results indicate that the successful synthesis of the novel HAPAM opens a promising strategy for developing new high-performance oil-displacing polymers.

Funder

Sichuan Provincial Department of Science and Technology

Sichuan University of Science and Engineering

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3