A Kernel Based Neighborhood Discriminant Submanifold Learning for Pattern Classification

Author:

Zhao Xu1

Affiliation:

1. The Laboratory of Computer Software and Theory, Beijing University of Technology, Beijing 100124, China

Abstract

We propose a novel method, called Kernel Neighborhood Discriminant Analysis (KNDA), which can be regarded as a supervised kernel extension of Locality Preserving Projection (LPP). KNDA nonlinearly maps the original data into a kernel space in which two graphs are constructed to depict the within-class submanifold and the between-class submanifold. Then a criterion function which minimizes the quotient between the within-class representation and the between-class representation of the submanifolds is designed to separate each submanifold constructed by each class. The real contribution of this paper is that we bring and extend the submanifold based algorithm to a general model and by some derivation a simple result is given by which we can classify a given object to a predefined class effectively. Experiments on the MNIST Handwritten Digits database, the Binary Alphadigits database, the ORL face database, the Extended Yale Face Database B, and a downloaded documents dataset demonstrate the effectiveness and robustness of the proposed method.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Energy Efficiency Design Optimization of Office Building Based on Doe Orthogonal Test;IOP Conference Series: Earth and Environmental Science;2019-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3