Cropping Practices and Effects on Soil Nutrient Adequacy Levels and Cassava Yield of Smallholder Farmers in Northern Zambia

Author:

Kaluba Peter12ORCID,Mwamba Sydney234,Moualeu-Ngangue Dany Pascal2,Chiona Martin5,Munyinda Kalaluka4,Winter Etti6,Stützel Hartmut2,Chishala Benson H.1

Affiliation:

1. Department of Soil Sciences, School of Agricultural Sciences, P. O Box 32379, University of Zambia, Lusaka, Zambia

2. Institute of Vegetable Production Systems, Leibniz Universität Hannover, Herrenhäuserstr. 2, Hannover 30419, Germany

3. Seed Control and Certification Institute, Ministry of Agriculture, Chilanga, Zambia

4. Department of Plant Sciences, School of Agricultural Sciences, P. O Box 32379, University of Zambia, Lusaka, Zambia

5. Zambia Agriculture Research Institute, Mansa Research Station, P. O. Box 710129, Mansa, Zambia

6. Institute for Environmental Economics and World Trade, KönigswortherPlatz 1 30167, Hannover Leibniz University of Hannover, Hannover, Germany

Abstract

Cassava is a staple food and a major source of income for many smallholder farmers. However, its yields are less than 6 t ha−1 compared to a potential yield of 20–25 t ha−1 in Zambia. Understanding cropping practices and constraints in cassava production systems is imperative for sustainable intensification. Therefore, a survey of 40 households each with three fields of cassava at 12, 24, and 36 months after planting (MAP) was conducted. Analyzed soil data, leaf area index (LAI), intercepted photosynthetically active radiation, and management practices from 120 fields were collected and subjected to descriptive statistics. To explain yield differences within the same cassava growth stage group, the data were grouped into low- and high-yield categories using the median, before applying a nonparametric test for one independent sample. Stepwise regressions were performed on each growth stage and the whole dataset to determine factors affecting tuber yield. Cassava intercropping and monocropping systems were the main cropping systems for the 12 and 24–36 MAP, respectively. Cassava yields declined by 209 and 633 kg ha−1 at 12 and 36 MAP due to soil nutrient depletion for each year of cultivation until field abandonment at 8–9 years. Fresh cassava yields ranged from 3.51–8.51, 13.52–25.84, and 16.92–30.98 t ha−1 at 12, 24, and 36 MAP, respectively. For every one unit increment in exchangeable K (cmol (+)/kg soil), cassava yield increased by 435, 268, and 406 kg ha−1 at 12, 24, and 36 MAP, respectively. One unit increment of magnesium (cmol (+)/kg soil) gave the highest yield increase of 525 kg ha−1 at 24 MAP. The low levels of soil organic carbon explained the deficient nitrogen in cassava fields, which limits the LAI growth and consequently reduced intercepted radiation and low yields. The effect of exchangeable K on growth was limited by the moderate availability of Mg and low N, thus the need for balanced fertilizer regimes.

Funder

Ministry of Agriculture and Food

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3