Reproducible Analysis of Rat Brain PET Studies Using an Additional [18F]NaF Scan and an MR-Based ROI Template

Author:

Buiter Hans J. C.1,van Velden Floris H. P.1,Leysen Josée E.1,Fisher Abraham2,Windhorst Albert D.1,Lammertsma Adriaan A.1,Huisman Marc C.1

Affiliation:

1. Department of Nuclear Medicine & PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands

2. Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel

Abstract

Background. An important step in the analysis of positron emission tomography (PET) studies of the brain is the definition of regions of interest (ROI). Image coregistration, ROI analysis, and quantification of brain PET data in small animals can be observer dependent. The purpose of this study was to investigate the feasibility of ROI analysis based on a standard MR template and an additional [18F]NaF scan.Methods. [18F]NaF scans of 10 Wistar rats were coregistered with a standard MR template by 3 observers and derived transformation matrices were applied to corresponding [11C]AF150(S) images. Uptake measures were derived for several brain regions delineated using the MR template. Overall agreement between the 3 observers was assessed by interclass correlation coefficients (ICC) of uptake data. In addition, [11C]AF150(S) ROI data were compared withex vivobiodistribution data.Results. For all brain regions, ICC analysis showed excellent agreement between observers. Reproducibility, estimated by calculation of standard deviation of the between-observer differences, was demonstrated by an average of 17% expressed as coefficient of variation. Uptake of [11C]AF150(S) derived from ROI analysis closely matchedex vivobiodistribution data.Conclusions. The proposed method provides a reproducible and tracer-independent method for ROI analysis of rat brain PET data.

Funder

A. J. Coops Foundationa

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3