Strain Rate Effect on Acoustic Emission Characteristics and Energy Mechanisms of Karst Limestone under Uniaxial Compression

Author:

Wang Qingsong1ORCID,Chen Jianxun1ORCID,Guo Jiaqi12ORCID,Luo Yanbin1ORCID,Li Yao1ORCID,Wang Hongyu3,Liu Qin4ORCID

Affiliation:

1. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China

2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China

3. Shaanxi Provincial Transport Planning Design and Research Institute, Xi’an, Shaanxi 710068, China

4. School of Civil Engineering, Chang’an University, Xi’an, Shaanxi 710064, China

Abstract

In this paper, the strain rate effect on mechanical properties, failure modes, acoustic emission (AE) characteristics, and energy mechanism of the karst limestone was analyzed based on uniaxial compression tests with different strain rates (5 × 10−6–5 × 10−4/s). The results showed that the peak strength increased linearly and peak strain increased quadratically with the logarithm value of the strain rate. Moreover, the strain rate effect on elastic modulus was not significant. Under low strain rates, the rock was damaged seriously, AE signals appeared continuously, and the cumulative number of AE signals was high. Under high strain rates, the total quantity of the macroscopic cracks decreased, but the crack length extended with better coalescence. The AE peak significantly increased under high strain rates, while the cumulative AE activity significantly reduced. The energy evolution of the karst limestone failure process had significant stage characteristics, and the strain energy ratio presented an S-shape. The maximum value of the elastic strain energy at peak stress showed a linear relationship with the logarithm value of the strain rate.

Funder

State Key Development Program for Basic Research of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3