Mechanical Properties and Energy Evolution Characteristics of karst Limestone with Different Degree of Dissolution under Uniaxial Compression

Author:

Guo Jiaqi,Gu Jiheng,Wang Erbo,Chen Jianxun,Wang Qingsong

Abstract

Under the action of dissolution, rock masses form solution fissure leading to changes in their internal structure, which in turn affect their engineering mechanical properties and failure characteristics. Karst rock masses usually have a significant impact on the stability of tunnel surrounding rocks in karst stratum. This article utilizes digital image processing technology and particle flow discrete element method to numerically reconstruct calculation models of limestone with different degree of dissolution. A series of uniaxial compression discrete element numerical experiments were conducted on karst limestone with different degree of dissolution, analyzing the stress-strain relationship, mechanical parameters, failure modes, and energy changes of limestone with different degree of dissolution. Research results indicated the following: (1) The karst limestone model constructed based on digital image processing technology can effectively characterize the dissolution features of karst limestone, and numerical simulation experiments can effectively characterize the mechanical behavior of karst limestone. (2) As the degree of dissolution increases, the stress-strain curve of karst limestone gradually exhibits bimodal or multimodal characteristics, and the uniaxial compressive strength of karst limestone shows an exponential decrease trend, while the elastic modulus shows a linear decrease trend. (3) Under high degree of dissolution, the existence of pore structure causes the stress skeleton inside the karst limestone to be damaged, and the number of shear and tensile cracks is continuously decreasing. The distribution of internal force chains is dispersed, making the karst limestone more prone to failure. (4) During the process of karst limestone failure, most of the input total strain energy is first converted into elastic strain energy, and only a small portion is converted into dissipative strain energy. The increase in the degree of dissolution significantly reduces the total energy input and the storage limit of elastic strain energy during the uniaxial compression failure process of karst limestone, and increases the degree of strain energy dissipation.

Publisher

EJSE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3