A Highly Selective Analytical Method Based on Salt-Assisted Liquid-Liquid Extraction for Trace-Level Enrichment of Multiclass Pesticide Residues in Cow Milk for Quantitative Liquid Chromatographic Analysis

Author:

Bekele Habtamu1ORCID,Yohannes Weldegebriel1,Megersa Negussie1ORCID

Affiliation:

1. Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

Abstract

In this study, a simple, inexpensive, selective, and fast salting-out assisted liquid-liquid extraction (SALLE) technique coupled with high-pressure liquid chromatography-diode array detection (HPLC-DAD) was developed for the extraction, preconcentration, and analysis of trace level seven multiclass pesticide residues in pasteurized and raw cow milk samples. The significant factors that affect the extent to which the target analytes are extracted, such as the type of extraction solvent and its volume, the type and concentration of salting-out salts, the pH of the solution, and the extraction time, have been investigated. Under optimum conditions, the correlation coefficient (r2) was obtained within a range of 0.9982–0.9997 for a broad linear range concentration of 2–1500 ng·mL−1. Reliable sensitivity was achieved with limits of detection (LODs) and limits of quantification (LOQs) ranging from 0.58–2.56 ng·mL−1 and 1.95–8.51 ng·mL−1, respectively. While precision with interday and intraday in terms of relative standard deviations (RSDs) was observed in the range of 1.97 ̶ 7.88% and 4.52 ̶ 8.04%, respectively. The results of the precision studies reveal that good repeatability and reproducibility (RSDs <9) were achieved, thus showing a low variability extraction of the developed method. Finally, the proposed and validated approach was effectively used to extract and determine pesticide residues in real milk matrices; however, the target analytes were not detected in all samples.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3