The Application of Minimally Invasive Devices with Nanostructured Surface Functionalization: Antisticking Behavior on Devices and Liver Tissue Interface in Rat

Author:

Lin Li-Hsiang12,Hsu Ya-Ju3,Chiang Hsi-Jen124,Cheng Han-Yi145ORCID,Wang Che-Shun12,Ou Keng-Liang1456

Affiliation:

1. Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan

2. School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan

3. Department of Dentistry, Sijhih Cathay General Hospital, Taipei 221, Taiwan

4. Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan

5. Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan

6. Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, Taipei 235, Taiwan

Abstract

This study investigated the thermal injury and adhesion property of a novel electrosurgery of liver using copper-doped diamond-like carbon (DLC-Cu) surface treatment. It is necessary to reduce the thermal damage of surrounding tissues for clinical electrosurgeries. The surface morphologies of stainless steel (SS) coated with DLC (DLC-Cu-SS) films were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Bionic liver models were reconstructed using magnetic resonance imaging (MRI) to simulate electrosurgery. Cell cytotoxicity assays showed that the DLC-Cu thin film was nontoxic. The temperature of tissue decreased significantly with use of the electrosurgical device with nanostructured DLC-Cu films and increased with increasing thickness of the films. Thermography revealed that the surgical temperature in the DLC-Cu-SS electrosurgical device was significantly lower than that in the untreated device in the animal model. Moreover, compared to the SS electrosurgical device, the DLC-Cu-SS electrosurgical device caused a relatively small injury area and lateral thermal effect. The results indicate that the DLC-Cu-SS electrosurgical device decreases excessive thermal injury and ensures homogeneous temperature transformation in the tissues.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3