Bioinspired Functional Surfaces for Medical Devices

Author:

Zhang Liwen,Liu Guang,Guo Yurun,Wang Yan,Zhang Deyuan,Chen Huawei

Abstract

AbstractMedical devices are a major component of precision medicine and play a key role in medical treatment, particularly with the rapid development of minimally invasive surgery and wearable devices. Their tissue contact properties strongly affect device performance and patient health (e.g., heat coagulation and slipperiness on surgical graspers). However, the design and optimization of these device surfaces are still indistinct and have no supporting principles. Under such conditions, natural surfaces with various unique functions can provide solutions. This review summarizes the current progress in natural functional surfaces for medical devices, including ultra-slipperiness and strong wet attachment. The underlying mechanisms of these surfaces are attributed to their coupling effects and featured micro-nano structures. Depending on various medical requirements, adaptable designs and fabrication methods have been developed. Additionally, various medical device surfaces have been validated to achieve enhanced contact properties. Based on these studies, a more promising future for medical devices can be achieved for enhanced precision medicine and human health.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3