Chinese Clinical Named Entity Recognition with ALBERT and MHA Mechanism

Author:

Li Dongmei12ORCID,Long Jiao12ORCID,Qu Jintao12ORCID,Zhang Xiaoping3ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China

3. Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100053, China

Abstract

Traditional clinical named entity recognition methods fail to balance the effectiveness of feature extraction of unstructured text and the complexity of neural network models. We propose a model based on ALBERT and a multihead attention (MHA) mechanism to solve this problem. Structurally, the model first obtains character-level word embeddings through the ALBERT pretraining language model, then inputs the word embeddings into the iterated dilated convolutional neural network model to quickly extract global semantic information, and decodes the predicted labels through conditional random fields to obtain the optimal label sequence. Also, we apply the MHA mechanism to capture intercharacter dependencies from multiple aspects. Furthermore, we use the RAdam optimizer to boost the convergence speed and improve the generalization ability of our model. Experimental results show that our model achieves an F1 score of 85.63% on the CCKS-2019 dataset—an increase of 4.36% compared to the baseline model.

Funder

Central Public Welfare Research Institutes

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3