Feature Extraction and Classification on Esophageal X-Ray Images of Xinjiang Kazak Nationality

Author:

Yang Fang1ORCID,Hamit Murat2ORCID,Yan Chuan B.2,Yao Juan3,Kutluk Abdugheni2,Kong Xi M.2,Zhang Sui X.2

Affiliation:

1. Department of Medical Engineering, The Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi 830011, China

2. College of Medical Engineering Technology, Xinjiang Medical University, Urumqi 830011, China

3. Department of Radiology, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, China

Abstract

Esophageal cancer is one of the fastest rising types of cancers in China. The Kazak nationality is the highest-risk group in Xinjiang. In this work, an effective computer-aided diagnostic system is developed to assist physicians in interpreting digital X-ray image features and improving the quality of diagnosis. The modules of the proposed system include image preprocessing, feature extraction, feature selection, image classification, and performance evaluation. 300 original esophageal X-ray images were resized to a region of interest and then enhanced by the median filter and histogram equalization method. 37 features from textural, frequency, and complexity domains were extracted. Both sequential forward selection and principal component analysis methods were employed to select the discriminative features for classification. Then, support vector machine andK-nearest neighbors were applied to classify the esophageal cancer images with respect to their specific types. The classification performance was evaluated in terms of the area under the receiver operating characteristic curve, accuracy, precision, and recall, respectively. Experimental results show that the classification performance of the proposed system outperforms the conventional visual inspection approaches in terms of diagnostic quality and processing time. Therefore, the proposed computer-aided diagnostic system is promising for the diagnostics of esophageal cancer.

Funder

Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3