Human Adipose-Derived Stem Cells Exhibit Enhanced Proliferative Capacity and Retain Multipotency Longer than Donor-Matched Bone Marrow Mesenchymal Stem Cells during Expansion In Vitro

Author:

Burrow Kimberley L.1,Hoyland Judith A.12,Richardson Stephen M.1ORCID

Affiliation:

1. Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK

2. NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK

Abstract

Bone marrow-derived mesenchymal stem cells (MSCs) and adipose-derived multipotent/mesenchymal stem cells (ASCs) have been proposed as the ideal cell types for a range of musculoskeletal tissue engineering and regenerative medicine therapies. However, extensive in vitro expansion is required to generate sufficient cells for clinical application and previous studies have demonstrated differences in the proliferative capacity and the impact of expansion on differentiation capacity of both MSCs and ASCs. Significantly, these studies routinely use cells from different donors, making direct comparisons difficult. Importantly, this study directly compared the proliferative capacity and multipotency of human MSCs and ASCs from the same donors to determine how each cell type was affected by in vitro expansion. The study identified that ASCs were able to proliferate faster and undergo greater population doublings than donor-matched MSCs and that senescence was primarily driven via telomere shortening and upregulation of p16ink4a. Both donor-matched MSCs and ASCs were capable of trilineage differentiation early in cultures; however, while differentiation capacity diminished with time in culture, ASCs retained enhanced capacity compared to MSCs. These findings suggest that ASCs may be the most appropriate cell type for musculoskeletal tissue engineering and regenerative medicine therapies due to their enhanced in vitro expansion capacity and limited loss of differentiation potential.

Funder

Research Councils UK

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3