ROSA/LSTF Tests and Posttest Analyses by RELAP5 Code for Accident Management Measures during PWR Station Blackout Transient with Loss of Primary Coolant and Gas Inflow

Author:

Takeda Takeshi12ORCID,Ohtsu Iwao2

Affiliation:

1. Nuclear Regulation Authority, 1-9-9 Roppongi, Minato-ku, Tokyo-to 106-8450, Japan

2. Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan

Abstract

Three tests were carried out with the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated accident management (AM) measures during station blackout transient with loss of primary coolant under assumptions of nitrogen gas inflow and total failure of high-pressure injection system in a pressurized water reactor. As the AM measures, steam generator (SG) secondary-side depressurization was done by fully opening the relief valves in both SGs, and auxiliary feedwater was injected into the secondary-side of both SGs simultaneously. Conditions for the break size and the onset timing of the AM measures were different among the three LSTF tests. In the three LSTF tests, the primary pressure decreased to a certain low pressure of below 1 MPa with or without the primary depressurization by fully opening the relief valve in a pressurizer as an optional AM measure, while no core uncovery took place through the whole transient. Nonuniform flow behaviors were observed in the SG U-tubes under natural circulation (NC) with nitrogen gas depending probably on the gas accumulation rate in the two LSTF tests that the gas accumulated remarkably. The RELAP5/MOD3.3 code predicted most of the overall trends of the major thermal hydraulic responses observed in the three LSTF tests. The code, however, indicated remaining problems in the predictions of the primary pressure, the SG U-tube collapsed liquid levels, and the NC mass flow rate after the nitrogen gas ingress as well as the accumulator flow rate through the analyses for the two LSTF tests, where the remarkable gas accumulation occurred.

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3