Microannulus Formation Mechanism at the Cementing Interface of a Thermal Recovery Well during Cyclic Steam Injection

Author:

Wu JiWei1,Wang XueGang1,Song Lin1,Zhong ShouMing1,Yin WenFeng2ORCID

Affiliation:

1. Engineering Technology Research Institute of Xinjiang Oilfield Company, Karamay 834000, China

2. Petroleum Engineering School of Southwest Petroleum University, Chengdu 610500, China

Abstract

During the thermal recovery of heavy oil when using cyclic steam injection technology, a microannulus tends to form at the cementing interface subjected to high temperature and pressure during steam injection, and large temperature and pressure differences after injection can lead to wellbore integrity failure. In this study, a thermomechanical coupled finite element casing-cement-formation model of a thermal recovery wellbore is established. The deformation of the wellbore during both the steam injection stage and the steam shutdown stage is analyzed. The microannulus formation mechanism at the cementing interface of the wellbore is studied. During steam injection, under the large thermomechanical coupling load, the wellbore generates a high stress that leads to elastic-plastic deformation. In the steam shutdown stage, with the load on the wellbore decreasing, elastic deformation recovers mostly, while plastic deformation continues. If the plastic deformation is large enough, a microannulus will form at the cementing interface. Increasing the elastic moduli of the casing, cement, and the formation can enlarge their plastic deformation during steam injection. The increase of plastic deformation of the cement or formation can enlarge the microannulus of the casing-cement interface or the cement-formation interface correspondingly in the steam shutdown stage.

Funder

China National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3