A Fault Diagnosis Model for Rotating Machinery Using VWC and MSFLA-SVM Based on Vibration Signal Analysis

Author:

You Lei12ORCID,Fan Wenjie1,Li Zongwen1,Liang Ying34,Fang Miao4ORCID,Wang Jin1ORCID

Affiliation:

1. School of Information Science and Engineering, Chengdu University, Chengdu 610106, China

2. Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province, Changsha University of Science & Technology, Changsha 410114, China

3. College of Electronic and Information Engineering, Chengdu Aeronautic Polytechnic, Chengdu 610100, China

4. Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan, Chengdu University, Chengdu 610106, China

Abstract

Fault diagnosis of rotating machinery mainly includes fault feature extraction and fault classification. Vibration signal from the operation of machinery usually could help diagnosing the operational state of equipment. Different types of fault usually have different vibrational features, which are actually the basis of fault diagnosis. This paper proposes a novel fault diagnosis model, which extracts features by combining vibration severity, dyadic wavelet energy time-spectrum, and coefficient power spectrum of the maximum wavelet energy level (VWC) at the feature extraction stage. At the stage of fault classification, we design a support vector machine (SVM) based on the modified shuffled frog-leaping algorithm (MSFLA) for the accurate classifying machinery fault method. Specifically, we use the MSFLA method to optimize SVM parameters. MSFLA can avoid getting trapped into local optimum, speeding up convergence, and improving classification accuracy. Finally, we evaluate our model on real rotating machinery platform, which has four different states, i.e., normal state, eccentric axle fault (EAF), bearing pedestal fault (BPF), and sealing ring wear fault (SRWF). As demonstrated by the results, the VWC method is efficient in extracting vibration signal features of rotating machinery. Based on the extracted features, we further compare our classification method with other three fault classification methods, i.e., backpropagation neural network (BPNN), artificial chemical reaction optimization algorithm (ACROA-SVM), and SFLA-SVM. The experiment results show that MSFLA-SVM achieves a much higher fault classification rate than BPNN, ACROA-SVM, and SFLA-SVM.

Funder

State’s Key Project of Research and Development Plan

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3