Affiliation:
1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
Abstract
In recent years, with the continuous improvement of urban public transportation capacity, citizens’ travel has become more and more convenient, but there are still some potential problems, such as morning and evening peak congestion, imbalance between the supply and demand of vehicles and passenger flow, emergencies, and social local passenger flow surged due to special circumstances such as activities and inclement weather. If you want to properly guide the local passenger flow and make a reasonable deployment of operating buses, it is necessary to grasp the changing law of public transportation short-term passenger flow. This paper builds a short-term passenger flow prediction model for urban public transportation based on the idea of integrated learning. The goal is to use the integrated model to accurately predict the short-term passenger flow of urban public transportation, using Multivariable Linear Regression (MLR), K-Nearest Neighbor (KNN), eXtreme Gradient Boosting (XGBoost), and Gated Recurrent Unit (GRU) as the four seed models, and then use regression algorithm to integrate the model and predict the passenger flow, station boarding and landing, and cross-sectional passenger flow data of the typical representative line 428 in the “Huitian Area” of Beijing from January 1, 2020, to May 31, 2020. Finally, the prediction results of the submodels are compared with those of the integrated model to verify the superiority of the integrated model. The research results of this paper can enrich the short-term passenger flow forecasting system of urban public transportation and provide effective data support and scientific basis for the passenger flow, vehicle management, and dispatch of urban public transportation.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献