A Deep Intelligent Attack Detection Framework for Fog-Based IoT Systems

Author:

Gudla Surya Pavan Kumar1ORCID,Bhoi Sourav Kumar2ORCID,Nayak Soumya Ranjan3ORCID,Singh Krishna Kant4ORCID,Verma Amit5ORCID,Izonin Ivan6ORCID

Affiliation:

1. Department of Computer Science and Engineering, NCR-PMEC Berhampur, Faculty of Engineering, BPUT, Rourkela 769015, Odisha, India

2. Department of Computer Science and Engineering, Parala Maharaja Engineering College (Govt), Berhampur 761003, Odisha, India

3. School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar 751024, Odisha, India

4. Department of CSE, ASET, Amity University, Noida 201301, India

5. Department of Computer Science & Engineering and University Center for Research and Development, Chandigardh University, Mohali 140413, Punjab, India

6. Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv 79013, Ukraine

Abstract

Fog computing provides a multitude of end-based IoT system services. End IoT devices exchange information with fog nodes and the cloud to handle client undertakings. During the process of data collection between the layer of fog and the cloud, there are more chances of crucial attacks or assaults like DDoS and many more security attacks being compromised by IoT end devices. These network (NW) threats must be spotted early. Deep learning (DL) assumes an unmistakable part in foreseeing the end client behavior by extricating highlights and grouping the foe in the network. Yet, because of IoT devices’ compelled nature in calculation and storage spaces, DL cannot be managed on those. Here, a framework for fog-based attack detection is proffered, and different attacks are prognosticated utilizing long short-term memory (LSTM). The end IoT gadget behaviour can be prognosticated by installing a trained LSTMDL model at the fog node computation module. The simulations are performed using Python by comparing LSTMDL model with deep neural multilayer perceptron (DNMLP), bidirectional LSTM (Bi-LSTM), gated recurrent units (GRU), hybrid ensemble model (HEM), and hybrid deep learning model (CNN + LSTM) comprising convolutional neural network (CNN) and LSTM on DDoS-SDN (Mendeley Dataset), NSLKDD, UNSW-NB15, and IoTID20 datasets. To evaluate the performance of the binary classifier, metrics like accuracy, precision, recall, f1-score, and ROC-AUC curves are considered on these datasets. The LSTMDL model shows outperforming nature in binary classification with 99.70%, 99.12%, 94.11%, and 99.88% performance accuracies on experimentation with respective datasets. The network simulation further shows how different DL models present fog layer communication behaviour detection time (CBDT). DNMLP detects communication behaviour (CB) faster than other models, but LSTMDL predicts assaults better.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3