Optimized intrusion detection in IoT and fog computing using ensemble learning and advanced feature selection

Author:

Tawfik MohammedORCID

Abstract

The proliferation of Internet of Things (IoT) devices and fog computing architectures has introduced major security and cyber threats. Intrusion detection systems have become effective in monitoring network traffic and activities to identify anomalies that are indicative of attacks. However, constraints such as limited computing resources at fog nodes render conventional intrusion detection techniques impractical. This paper proposes a novel framework that integrates stacked autoencoders, CatBoost, and an optimised transformer-CNN-LSTM ensemble tailored for intrusion detection in fog and IoT networks. Autoencoders extract robust features from high-dimensional traffic data while reducing the dimensionality of the efficiency at fog nodes. CatBoost refines features through predictive selection. The ensemble model combines self-attention, convolutions, and recurrence for comprehensive traffic analysis in the cloud. Evaluations of the NSL-KDD, UNSW-NB15, and AWID benchmarks demonstrate an accuracy of over 99% in detecting threats across traditional, hybrid enterprises and wireless environments. Integrated edge preprocessing and cloud-based ensemble learning pipelines enable efficient and accurate anomaly detection. The results highlight the viability of securing real-world fog and the IoT infrastructure against continuously evolving cyber-attacks.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3