Effect of Annealing on the Microstructure, Hardness, Electrical Conductivity, and Corrosion of Copper Material before Accumulative Roll Bonding Processes

Author:

Pita M.1ORCID,Lebea L.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Technology, University of South Africa, Pretoria, South Africa

Abstract

Copper is one of the first metals to ever be mined and used by humans, and since the dawn of civilization, it has made important contributions to behavioral science. The exploration of copper has provided knowledge of nonfuel minerals and has consequently improved society. The objective of this paper is to investigate the effect of annealing on the microstructure, mechanical properties, and corrosion of copper material before undergoing an accumulative roll bonding process (ARB). The material was heated to 600°C and cooled with water before being rolled by a two-roller rolling machine. The second ARB experiment was conducted on copper material without annealing. The samples were characterized by a light microscope (LM). The ASTM E384 test method was followed during the hardness test. The results show that annealing and applying two passes of the ARB process reduce the grain size by 37%, which is significant. It also increases copper hardness by 65% and increases its electrical conductivity by 2.6%. Additionally, the results show that the open circuit potential during the first pass heated sample was −0.07237 V; this increased by 22.16% with the second pass heated sample.

Funder

University of South Africa

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reliability Aspects and Study of Copper Seed Deposition on Polyimide via Sputtering;2023 37th Symposium on Microelectronics Technology and Devices (SBMicro);2023-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3