Dual-Path Residual “Shrinkage” Network for Side-Scan Sonar Image Classification

Author:

Ruan Fengxue1ORCID,Dang Lanxue1ORCID,Ge Qiang12ORCID,Zhang Qian3ORCID,Qiao Baojun1,Zuo Xianyu1ORCID

Affiliation:

1. Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China

2. Henan Province Engineering Research Center of Spatial Information Processing, Henan University, Kaifeng 475004, China

3. The Institute of Acoustics of the Chinese Academy of Sciences, Beijing, China

Abstract

The underwater environment is complicated and changeable and contains many noises, making it difficult to detect a particular object in the underwater environment. At present, the main seabed detection technology explores the seabed environment with sonar equipment. However, the characteristics of underwater sonar imaging (e.g., low contrast, blurred edges, poor texture, and unsatisfactory quality) have serious negative influences on such image classification. Therefore, in this study, we propose a dual-path deep residual “shrinkage” network (DP-DRSN) module, which is a simple and effective neural network attention module that can classify side-scan sonar images. Specifically, the module can extract background and feature texture information of the input feature mapping through different scales (e.g., global average pooling and global max pooling), whereas scale information passes through a two-layer 1 × 1 convolution to increase nonlinearity. This helps realize cross-channel information interaction and information integration simultaneously before outputting threshold parameters in a sigmoid layer. The parameters are then multiplied by the average value of the input feature mapping to obtain a threshold, which is used to denoise the image features using the soft threshold function. The proposed DP-DRSN study provided higher classification accuracy and efficiency than other models. In this way, the feasibility and effectiveness of DP-DRSN in image classification of side-scan sonar are proven.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3