Signal Feature Extraction and Quantitative Evaluation of Metal Magnetic Memory Testing for Oil Well Casing Based on Data Preprocessing Technique

Author:

Liu Zhilin1,Liu Lutao2,Zhang Jun3

Affiliation:

1. College of Automation, Harbin Engineering University, Harbin, Heilongjiang 150001, China

2. College of Information and Telecommunication, Harbin Engineering University, Harbin, Heilongjiang 150001, China

3. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Abstract

Metal magnetic memory (MMM) technique is an effective method to achieve the detection of stress concentration (SC) zone for oil well casing. It can provide an early diagnosis of microdamages for preventive protection. MMM is a natural space domain signal which is weak and vulnerable to noise interference. So, it is difficult to achieve effective feature extraction of MMM signal especially under the hostile subsurface environment of high temperature, high pressure, high humidity, and multiple interfering sources. In this paper, a method of median filter preprocessing based on data preprocessing technique is proposed to eliminate the outliers point of MMM. And, based on wavelet transform (WT), the adaptive wavelet denoising method and data smoothing arithmetic are applied in testing the system of MMM. By using data preprocessing technique, the data are reserved and the noises of the signal are reduced. Therefore, the correct localization of SC zone can be achieved. In the meantime, characteristic parameters in new diagnostic approach are put forward to ensure the reliable determination of casing danger level through least squares support vector machine (LS-SVM) and nonlinear quantitative mapping relationship. The effectiveness and feasibility of this method are verified through experiments.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3