High-Temperature Superconducting Cable Design Based on Individual Insulated Conductors

Author:

Cheetham Peter1ORCID,Viquez Jose1,Kim WooJin1,Graber Lukas2,Kim Chul H.1,Pamidi Sastry V.13

Affiliation:

1. Center for Advanced Power Systems, Florida State University, 2000 Levy Avenue, Tallahassee, Florida 32310, USA

2. School of Electrical and Computing Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, Georgia 30332, USA

3. Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, USA

Abstract

The idea of insulating individual high-temperature superconducting (HTS) tapes was explored as a dielectric design to reduce the risk and complexity of HTS cable manufacturing. Applying insulation on individual HTS tapes is amenable to continuous manufacturing processes and opens up material choices for the insulation. In this study, heat shrink insulation was selected as the material choice for exploring the possibility of this design philosophy because of its commercial availability in multiple thicknesses. A systematic set of selection criteria was developed for the selection of appropriate heat shrink for given HTS tape dimensions. The cryogenic dielectric characteristics of insulated HTS tapes were evaluated both in liquid nitrogen and gaseous helium environments at 77 K. Dielectric characteristics of tapes with a single layer of thicker insulation were compared with those insulated using multiple layers of thinner insulation to evaluate the relative merits of each method. Several model power cables were fabricated using the PET insulated tapes, and their dielectric behavior was evaluated at 77 K in gaseous helium environment. The results suggest that the explored method is useful for HTS power cables operating at low voltages (<1,000 V) primarily due to the limitation on achieving thick insulation with high quality using heat shrink tubing. The suitable processes of insulating longer lengths of samples with additional dielectric benefits are discussed.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3