Affiliation:
1. School of Mathematics and Computation Sciences, Hunan City University, Yiyang 413000, China
2. School of Distance Education, Huzhou Broadcast and TV University, Huzhou 313000, China
Abstract
We present the best possible parametersα1,α2,β1,β2∈Randα3,β3∈(1/2,1)such that the double inequalitiesα1A(a,b)+(1-α1)C(a,b)<NQA(a,b)<β1A(a,b)+(1-β1)C(a,b),Aα2(a,b)C1-α2(a,b)<NQA(a,b)<Aβ2(a,b)C1-β2(a,b),andC[α3a+(1-α3)b,α3b+(1-α3)a]<NQA(a,b)<C[β3a+(1-β3)b,β3b+(1-β3)a]hold for alla,b>0witha≠band give several sharp inequalities involving the hyperbolic and inverse hyperbolic functions. Here,N(a,b),A(a,b),Q(a,b), andC(a,b)are, respectively, the Neuman, arithmetic, quadratic, and centroidal means ofaandb, andNQA(a,b)=N[Q(a,b),A(a,b)].
Funder
National Natural Science Foundation of China
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献