Abstract
AbstractWe provide optimal bounds for the sine and hyperbolic tangent means in terms of various weighted means of the arithmetic and centroidal means
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference21 articles.
1. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.K.: Conformal invariants, inequalities, and quasiconformal maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997). With 1 IBM-PC floppy disk (3.5 inch; HD), A Wiley-Interscience Publication
2. Chu, H.H., Zhao, T.H., Chu, Y.M.: Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 70(5), 1097–1112 (2020). https://doi.org/10.1515/ms-2017-0417
3. Chu, Y.M., Long, B.Y.: Bounds of the Neuman-Sándor mean using power and identric means. Abstr. Appl. Anal. 6, Art. ID 832591 (2013). https://doi.org/10.1155/2013/832591
4. Chu, Y.M., Yang, Z.H., Wu, L.M.: Sharp power mean bounds for Sándor mean. Abstr. Appl. Anal. 5, Art. ID 172867 (2015). https://doi.org/10.1155/2015/172867
5. He, X.H., Qian, W.M., Xu, H.Z., Chu, Y.M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2627–2638 (2019). https://doi.org/10.1007/s13398-019-00643-2
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Sharp Power Mean Bounds for Two Seiffert-like Means;Axioms;2023-09-25
2. Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-01-25
3. New Bounds for Arithmetic Mean by the Seiffert-like Means;Mathematics;2022-05-24
4. Optimal bounds of classical and non-classical means in terms of Q means;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2021-10-08
5. Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2021-09-25