Affiliation:
1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
2. Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China
Abstract
The in situ stress field is the fundamental factor causing deformation and damage in geotechnical engineering, so it is the main basis for underground engineering design and excavation. However, it is difficult to accurately obtain the in situ stress through most existing inversion methods in areas with complex geological conditions. For the problem of a relatively discrete and nonlinear relationship of measured stress in the Yebatan Hydropower Station area, a new in situ stress inversion method called the local stress field correction (LSFC) method combining a genetic algorithm (GA), backpropagation (BP) neural network, and submodel method is proposed. The inverted in situ stress results produced by this method show that the distribution of in situ stress is greatly influenced by tectonic movements in the Yebatan area, there is no obvious linear relationship with depth, and the stress release phenomenon occurs at the faults. By comparison with the multiple regression method, it is found that the method still has high inversion accuracy under complex geological conditions, and the average relative error of LSFC inversion results is 17.05%, which is much lower than the value of 43.58% via the multiple regression method. Therefore, the LSFC method can be used for the inversion of in situ stress in complex geological regions and provide a reference for engineering design and construction.
Funder
National Natural Science Foundation of China
Subject
Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献