Local Stress Field Correction Method Based on a Genetic Algorithm and a BP Neural Network for In Situ Stress Field Inversion

Author:

Yao Tianzhi1ORCID,Mo Zuguo1ORCID,Qian Li1ORCID,He Jianhua2ORCID,Zhang Jianhai1ORCID

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China

2. Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China

Abstract

The in situ stress field is the fundamental factor causing deformation and damage in geotechnical engineering, so it is the main basis for underground engineering design and excavation. However, it is difficult to accurately obtain the in situ stress through most existing inversion methods in areas with complex geological conditions. For the problem of a relatively discrete and nonlinear relationship of measured stress in the Yebatan Hydropower Station area, a new in situ stress inversion method called the local stress field correction (LSFC) method combining a genetic algorithm (GA), backpropagation (BP) neural network, and submodel method is proposed. The inverted in situ stress results produced by this method show that the distribution of in situ stress is greatly influenced by tectonic movements in the Yebatan area, there is no obvious linear relationship with depth, and the stress release phenomenon occurs at the faults. By comparison with the multiple regression method, it is found that the method still has high inversion accuracy under complex geological conditions, and the average relative error of LSFC inversion results is 17.05%, which is much lower than the value of 43.58% via the multiple regression method. Therefore, the LSFC method can be used for the inversion of in situ stress in complex geological regions and provide a reference for engineering design and construction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference46 articles.

1. Rock mass utilization for the foundation surfaces of high arch dams in medium or high geo-stress regions: a review;X. Shen;Bulletin of Engineering Geology and the Environment,2014

2. In situ stress field inversion and its application in mining-induced rock mass movement

3. Three-dimensional inversion analysis of an in situ stress field based on a two-stage optimization algorithm

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3