An Improved Physics-Informed Neural Network Algorithm for Predicting the Phreatic Line of Seepage

Author:

Gao Yunpeng1ORCID,Qian Li1ORCID,Yao Tianzhi1ORCID,Mo Zuguo1ORCID,Zhang Jianhai1ORCID,Zhang Ru1,Liu Enlong1,Li Yonghong2

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China

2. Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China

Abstract

As new ways to solve partial differential equations (PDEs), physics-informed neural network (PINN) algorithms have received widespread attention and have been applied in many fields of study. However, the standard PINN framework lacks sufficient seepage head data, and the method is difficult to apply effectively in seepage analysis with complex boundary conditions. In addition, the differential type Neumann boundary makes the solution more difficult. This study proposed an improved prediction method based on a PINN with the aim of calculating PDEs with complex boundary conditions such as Neumann boundary conditions, in which the spatial distribution characteristic information is increased by a small amount of measured data and the loss equation is dynamically adjusted by loss weighting coefficients. The measured data are converted into a quadratic regular term and added to the loss function as feature data to guide the update process for the weight and bias coefficient of each neuron in the neural network. A typical geotechnical problem concerning seepage phreatic line determination in a rectangular dam is analyzed to demonstrate the efficiency of the improved method. Compared with the standard PINN algorithm, due to the addition of measurement data and dynamic loss weighting coefficients, the improved PINN algorithm has better convergence and can handle more complex boundary conditions. The results show that the improved method makes it convenient to predict the phreatic line in seepage analysis for geotechnical engineering projects with measured data.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3