Aviation Rivet Classification and Anomaly Detection Based on Deep Learning

Author:

Zhu Xiao-bo1ORCID

Affiliation:

1. School of Air Traffic Management, Civil Aviation Flight University of China, Guanghan, Sichuan 618307, China

Abstract

The shortage of personnel and the high cost have become a major pain point in the current safety supervision work of the inspectors. Aiming at the problem that the aircraft maintenance inspector could not visit the scene in person during the epidemic, a remote safety supervision platform was built based on intelligent glasses and 5G network, and the real-time monitoring of the aircraft skin rivet status was realized. And a method of aviation rivet classification and anomaly detection based on deep learning algorithm was proposed. Firstly, according to the appearance of rivet head, the aviation rivet is classified, the data set of aviation rivet is made, and the aviation rivet classification and anomaly detection model are constructed. Evaluate the detection results from such indicators as confidence, precision, recall rate, and mAP and compare the algorithm with the detection results of Yolox-s, Yolox-m, Yolov5-s, Yolov5-m, and Yolov4. The results show that (1) the algorithm proposed in this paper can realize the classification of aviation rivets and the detection of abnormal conditions, the confidence of the detection results is more than 90%, and the average precision, recall, and AP value are above 95%, 85%, and 88%, respectively. (2) The order of rivet classification and abnormal detection effect from good to bad is Philips screws, round head rivets, flat head rivets, countersunk head rivets, blind rivets, and abnormal condition. (3) Compared with other algorithms, the aviation rivet classification abnormal target detection based on deep learning has absolute advantages in accuracy and speed.

Funder

Civil Aviation Flight University of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference20 articles.

1. A Parametric Study of Magneto-Optic Imaging Using Finite-Element Analysis Applied to Aircraft Rivet Site Inspection

2. Pulsed eddy current technique for defect detection in aircraft riveted structures

3. Defect recognition of aircraft rivet based on magnetooptical image;G. Qingji;Journal of Image and Graphics,2007

4. Detection of the Fatigue Cracks Initiated near the Rivet Holes by Eddy Current Inspection Techniques

5. Optical surface inspection: structured-light 3D scanner speeds aircraft rivet inspection;G. Overton;Laser Focus World: The Magazine for the Photonics & Optoelectronics Industry,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence Application on Aircraft Maintenance: A Systematic Literature Review;EAI Endorsed Transactions on Internet of Things;2024-08-15

2. Unsupervised Machine Learning for Blind Rivets Quality Inspection;Lecture Notes in Mechanical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3