Detection of the Fatigue Cracks Initiated near the Rivet Holes by Eddy Current Inspection Techniques

Author:

Uchanin Valentyn1ORCID

Affiliation:

1. Karpenko Physico-Mechanical Institute of National Academy of Sciences of Ukraine Naukova str. 5 , Lviv , Ukraine , 79060

Abstract

Abstract Eddy current (EC) method is considered as most applicable for in-service detection of fatigue subsurface cracks initiated in aircraft multilayer structures near the rivet holes. At the same time, the successful solution of this problem is obstructed by additional noise created by defect-free rivets. All EC inspection techniques for the detection of subsurface cracks around the rivets can be classified into three main groups: 1) static mode – carried out by placing the EC probe concentrically on the rivet head; 2) rotational mode – when the EC probe is rotated around the rivet axle and 2) sliding mode – performed by the movement of EC probe along the rivet line or near it. All these approaches have some advantages and limitations. In this study, known EC techniques for the detection of cracks in multilayer aircraft structures are analyzed. New advanced EC techniques for the detection of fatigue cracks in internal layers of the riveted structures based on different types (ring, sliding, and rotational) probes are presented. The static EC method with developed low-height ring-type probe creates the possibility to detect cracks in the difficult of access areas. The possibility to estimate the length of detected cracks by a ring-type probe is shown. The proposed rotational remote field EC probe can detect as small as 1.0 mm long cracks under the button-head rivet and 2 mm thick upper skin with a high signal-to-noise ratio. Therefore, in many aircraft structures, fatigue cracks will be detected before a critical threshold achieved. New EC sliding techniques based on remote field and double differential probes were proposed for the rapid detection of cracks in internal layers of riveted aircraft structures. Remote-field EC probe for reliable detection of fatigue cracks in third and fourth layers of five-layer units was proposed. Another sliding technique based on a double differential EC probe gives the possibility to detect transverse cracks in the second layer without the rivet row area access. The main advantage of developed techniques is high inspection reliability due to the possibility to discriminate the signals created by cracks and defect-free rivets. Presented inspection procedures include the selective signal analysis in the complex plane diagram. Proposed EC inspection techniques were successfully implemented into the aircraft maintenance practice.

Publisher

Walter de Gruyter GmbH

Reference19 articles.

1. [1] Beattie, A., Dahlke, L., Gieske J., Hansche B., Phipps, G., Roach D., Shagam R. and Thompson K., 1994, “Emerging Nondestructive Inspection Methods for Aging Aircraft – Final Report”, DOT/FAA/CT-94/31, Federal Aviation Administration, Atlantic City International Airport, N.J.

2. [2] Goranson, U., 1997, “Fatigue issues in aircraft maintenance and Repairs”, Int. J. Fatigue, 20(6), pp. 413-431.

3. [3] Ostash, O., Fedirko, V., Uchanin, V. Bychkov, S., Moliar O., Semenets, O., Kravets V., Derecha V., 2007, Fracture mechanics and strength of materials, Vol. 5. Strength and durability of airplane materials and structural elements (in Ukrainian), Lviv, Spolom.

4. [4] McMaster, R.C., and McIntire, P., Mester, M.L., Eds, 1986, Nondestructive testing handbook (second edition), Vol. 4, Electromagnetic testing, American Society for NDT.

5. [5] Udpa, S.S., More P.O., Eds, 2004, Nondestructive testing handbook (third edition), Vol. 5, Electromagnetic testing, American Society for NDT.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3