Structural Response of the Metro Tunnel under Local Dynamic Water Environment in Loess Strata

Author:

Qiu Junling1ORCID,Qin Yiwen1,Lai Jinxing1ORCID,Wang Ke2ORCID,Niu Fangyuan3,Wang Hao4ORCID,Zhang Guanglong5

Affiliation:

1. School of Highway, Chang’an University, Xi’an 710064, China

2. State Key Laboratory of Rail Transit Engineering Informatization, China Railway First Survey and Design Institute Group Co. Ltd., Xi’an, Shaanxi 710043, China

3. China State Construction Silkroad Construction Investment Group Co., Ltd., Xi’an, Shaanxi 710068, China

4. School of Civil & Construction Engineering, Oregon State University, 101 Kearney Hall, Corvallis, OR 97331, USA

5. Shandong Academy of Building Research, Ji’nan 250031, China

Abstract

The reasons, prevention, and control of loess disaster are of great concern in practice. In recent years, Xi’an city, China, has taken the leadership in large-scale construction of subway lines in the loess strata. To study the structural response of the tunnel in loess region under local hydrodynamic environment, an experimental testing in 1g as well as a numerical simulation were performed, in which the achieved results were verified and were found to be in good agreement. Furthermore, the results showed that when the water outlet point is above the lining, the overall stress of the lining is “peanut shell,” as the water pressure of the outlet point decreases, the tensile stress of the top and bottom of the lining increases, while the compressive stress on both sides decreases; the channel form of the flow to the lining changes with the variation of the position of the water outlet point. It is worth mentioning that in the process of water gushing, the closer to the water source, the greater surface subsidence is, and there is a positive correlation between water pressure and surface subsidence. This study is of significant benchmark for the construction, maintenance, and prevention of tunnel in loess strata under the influence of water environment.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3