Traffic Structure Optimization in Historic Districts Based on Green Transportation and Sustainable Development Concept

Author:

Wang Qiuping1ORCID,Sun Hao1ORCID

Affiliation:

1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, China

Abstract

To perform the reasonable traffic structure in the historical districts and effectively alleviate the contradiction between limited traffic supply and rapid growth of the traffic demand in historical districts, a dynamic game model of traffic competition is established in this paper, aiming at the green transportation and sustainable development. Firstly, the logit model reflecting the sharing rate of the traffic mode is established by using the generalized cost method to quantify all the factors that influence the travel mode selection. Accordingly, a dynamic game model of complete information is established for the trip mode of historical districts, taking into account the economic sustainability, environmental sustainability, and social sustainability of the traffic development. The model is based on the goal of maximizing the generalized profit, and modeling with environmental pollution, energy utilization, and road service level as the common constraints of various traffic modes. By iterating the Nash equilibrium solution of the model, the optimal structure and the optimal share of the traffic modes in the historical districts can be predicted. Finally, the model presented in the study is verified by the historical districts of Academy Street in Zhengzhou city, China, and the optimal structure and optimal traffic share of each traffic mode in the block are obtained. By changing the constraint conditions of the model, two sets of different governance policies are compared and analyzed, and some feasible suggestions on improvement of traffic structure are also put forward. The research results can be the important reference for traffic planning in historic districts.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3