Modelling Cell Origami via a Tensegrity Model of the Cytoskeleton in Adherent Cells

Author:

Wang Lili12,Chen Weiyi12ORCID

Affiliation:

1. Shanxi Key Laboratory of Material Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. National Demonstration Center for Experimental Mechanics Education, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

Cell origami has been widely used in the field of three-dimensional (3D) cell-populated microstructures due to their multiple advantages, including high biocompatibility, the lack of special requirements for substrate materials, and the lack of damage to cells. A 3D finite element method (FEM) model of an adherent cell based on the tensegrity structure is constructed to describe cell origami by using the principle of the origami folding technique and cell traction forces. Adherent cell models contain a cytoskeleton (CSK), which is primarily composed of microtubules (MTs), microfilaments (MFs), intermediate filaments (IFs), and a nucleoskeleton (NSK), which is mainly made up of the nuclear lamina and chromatin. The microplate is assumed to be an isotropic linear-elastic solid material with a flexible joint that is connected to the cell tensegrity structure model by spring elements representing focal adhesion complexes (FACs). To investigate the effects of the degree of complexity of the tensegrity structure and NSK on the folding angle of the microplate, four models are established in the study. The results demonstrate that the inclusion of the NSK can increase the folding angle of the microplate, indicating that the cell is closer to its physiological environment, while increased complexity can reduce the folding angle of the microplate since the folding angle is depended on the cell types. The proposed adherent cell FEM models are validated by comparisons with reported results. These findings can provide theoretical guidance for the application of biotechnology and the analysis of 3D structures of cells and have profound implications for the self-assembly of cell-based microscale medical devices.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3