Structural Analysis and Reactivity of Tetramethylcopper(III) Complex towards Nitrogen Donor Ligands by Density Functional Theory

Author:

Balu Perumal1,Kannappan Venu2ORCID,Kumar Rathinavelu3ORCID

Affiliation:

1. Department of Chemistry, Guru Nanak College, Chennai 600 042, India

2. Department of Chemistry, Presidency College, Chennai 600 005, India

3. Department of Physics, The New College, Chennai 600 014, India

Abstract

DFT studies are carried out on some ligand substitution reactions of tetramethylcuprate(III) (TMC) complex with five different nitrogen donor ligands as probe ligands. The geometry optimization of the possible nine model systems and the frequency calculations are carried out at DFT level using LANL2DZ basis set. The selected structural parameters of optimized model systems of Cu(III) complexes are reported and discussed. The change in the M-C bond distance in TMC due to substitution by probe ligands is explained. Natural population analysis (NPA) has been carried out for these complexes to establish the charge of copper in these complexes. A detailed population analysis of valence orbitals of copper complexes supports the existence of d8 configuration for metal in complexes and there is evidence for the transmission of electrons from the nitrogen donor atom to dxy, dx2-y2, and 4s orbitals. Bond order calculations have been performed for all the complexes to probe the interaction between Cu(III) and the ligand. The stability of the complexes is ascertained from the computed chemical hardness. In order to understand the nature of Cu(III)-L (L = N donors) and Cu(III)-Me bonds in different complexes, Energy Decomposition Analysis (EDA) has been carried out for all the complexes chosen in the theoretical study. Thermodynamic feasibility of these reactions is investigated in terms of free energy changes of these reactions.

Publisher

Hindawi Limited

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3