Affiliation:
1. Department of Chemistry, Faculty of Science Sohag University Sohag 82524 Egypt
2. Chemistry Department, College of Science Taibah University Madinah 42353 Saudi Arabia
3. Department of Organic Chemistry, Faculty of Chemistry Alzahra University Tehran Iran
4. Department of Biological Sciences, Faculty of Science Taibah University Madinah 41321 Saudi Arabia
5. Chemistry Department, College of Science Taif University Taif 21944 Saudi Arabia
Abstract
Some novel FeIII, CuII, and PdII chelates incorporating N′‐(1‐methyl‐2‐oxoindolin‐3‐ylidene)benzohydrazide (MIBA) were fabricated. The tested compounds were investigated using thermogravimetric analysis (TGA), CHN, spectra analysis (IR, mass spectra, and NMR), melting point, magnetic moments, molar conductance, ultraviolet–visible spectroscopy, powder X‐ray diffraction, and computational studies. The conductance results showed that the tested FeIII, CuII, and PdII chelates are electrolytes. Magnetic and electronic spectra are applied to deduce the coordinating ability of the tested ligand, and the geometric structure of the studied chelates is found to be octahedral, distorted octahedral, and square planar for FeIII, CuII, and PdII chelates, respectively. The TGA study of these studied complexes displays that the hydrated H2O molecules, acetate, and nitrate are removed in the first and second degradation steps followed directly by degradation of the studied ligand leaving metal oxide as residue. The thermodynamic factors, like ΔS*, ΔH*, E*, A, and ΔG* are evaluated from the TGA curves and explained. The density functional theory (DFT)/B3LYP computation method was applied for the estimation of the molecular electrostatic potential (MEP; highest occupied molecular orbital [HOMO] and lowest unoccupied molecular orbital [LUMO]) energy for the studied compounds. In an in vitro study, the antimicrobial effects of the prepared compounds were screened on various strains of bacteria and fungi. It was found that tested compounds exposed a good biological efficacy through IC50 results close to reference drugs and antitumor potential against (MCF‐7, Hep‐G2, and HC‐T116) cell lines. The data obtained displayed that the studied chelates showed promising antitumor activity. The studied metal chelates were screened for in vitro antioxidant efficacy using DPPH assay. The studied compounds explained dynamic satisfying performance. Also, the crystal structures of breast cancer protein (PDB ID: 3HB5) and Escherichia coli (PDB ID: 2VF5) were performed by molecular docking simulation. Data of docking simulation suggestions are which tested compounds have biological behavior as well as have obvious benefit in the pharmaceutical business.
Reference90 articles.
1. Salophen Type ONNO Donor Schiff Base Complexes: Synthesis, Characterization, Bioactivity, Computational, and Molecular Docking Investigation
2. Synthesis and in vitro evaluation of N-alkyl-3-hydroxy-3-(2-imino-3-methyl-5-oxoimidazolidin-4-yl)indolin-2-one analogs as potential anticancer agents
3. (b)Mai M.Khalaf Hany M.Abd El‐Lateef MohamedGouda Asmaa EbrahimHassan MosaAlsehli Eida S.Al‐Farraj andAhmed M.Abu‐Dief. "Water soluble nano‐sized imine Ru (III) complex based on 4‐aminobenzene sodium sulphonate for biomedical applications." U.S. Patent 11 970 509 issued April 30 2024.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献