Numerical Study of Spherical Particle Breakage Based on Nonlinear Discrete Interface Bonded Model

Author:

Li Lin1ORCID,Zhang Sifeng2ORCID,Yu Shicai3,Zhang Xuanyu4

Affiliation:

1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China

2. School of Transportation Engineering, Shandong Jianzhu University, Jinan, Shandong, 250101, China

3. CSC Dongfu Assets Management Co. Ltd., Shanghai 200125, China

4. Shandong Hi-speed Infrastructure Construction CO.,LTD, Jinan, Shandong, 250101, China

Abstract

To study the contact mechanical characteristics and breakage mechanism of single particle, the particle contact experiment is simulated using the discrete element method. In this paper, to solve the problem that the envelope of the shear strength of the classical model is linear, a nonlinear discrete surface bonded model is introduced by applying nonlinear tangential strength criterion. The new model is compared with the classical model to verify its validity. Then, based on the new model, the particle contact experiment is numerically simulated, and the ball-plane contact breakage mechanism is analysed and discussed from the mesoscopic perspective. The results reveal that the nonlinear discrete interface bonded model can provide shear properties similar to those of actual materials. The numerical result reflects the shear failure of the edge of the conical region and the tensile failure of the whole specimen. Combined with the analysis of the results of stress distribution, velocity field, and force chain distribution, the formation mechanism of the cone core can be obtained.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3