Scale effects in rockfill behaviour

Author:

Alonso E. E.1,Tapias M.1,Gili J.1

Affiliation:

1. Department of Geotechnical Engineering and Geosciences, UPC, Barcelona, Spain

Abstract

The particle sizes in large rockfill structures such as dams prevent laboratory testing. The prediction of field behaviour requires the development of models that integrate size effects. A distinct element method model was developed in which grains are characterised by aggregations of a maximum of 14 elementary spherical particles (the resulting particle shape approaches real geometries and allows a reasonable breakage evolution) and the particle breakage criterion involves the subcritical propagation of fissures in the grain. Time effects are included through the velocity of crack propagation, a function of stress state and defect size, which is introduced as a random set of varying lengths. The model was used to simulate the stress–strain response, the evolution of grain size distribution and creep behaviour under oedometric conditions. The model has been used to simulate size effects in the range 0·28–56·0 cm of initial particle size (uniform distributions were tested). Compressibility and creep were partially validated by comparing calculations with test results covering a reduced range of particles. The paper presents the evolution of short-term compressibility and creep indices in terms of particle size. The model is a useful and novel tool with which to extrapolate laboratory results from scaled grain size distributions to prototype dimensions.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3