Fault Detection of the Wind Turbine Variable Pitch System Based on Large Margin Distribution Machine Optimized by the State Transition Algorithm

Author:

Tang Mingzhu1ORCID,Hu Jiahao1ORCID,Kuang Zijie1,Wu Huawei2ORCID,Zhao Qi1,Peng Shuhao1

Affiliation:

1. School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China

2. Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China

Abstract

Aiming at solving the problem that the parameters of a fault detection model are difficult to be optimized, the paper proposes the fault detection of the wind turbine variable pitch system based on large margin distribution machine (LDM) which is optimized by the state transition algorithm (STA). By setting the three parameters of the LDM model as a three-dimensional vector which was searched by STA, by using the accuracy of fault detection model as the fitness function of STA, and by adopting the four state transformation operators of STA to carry out global search in the form of point, line, surface, and sphere in the search space, the global optimal parameters of LDM fault detection model are obtained and used to train the model. Compared with the grid search (GS) method, particle swarm optimization (PSO) algorithm, and genetic algorithm (GA), the proposed model method has lower false positive rate (FPR) and false negative rate (FNR) in the fault detection of wind turbine variable pitch system in a real wind farm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3