Application of SCADA data in wind turbine fault detection – a review

Author:

Ma Junyan,Yuan Yiping

Abstract

Purpose With the rapid increase in the number of installed wind turbines (WTs) worldwide, requirements and expenses of maintenance have also increased significantly. The condition monitoring (CM) of WT provides a strong “soft guarantee” for preventive maintenance. The supervisory control and data acquisition (SCADA) system records a huge amount of condition data, which has become an effective means of CM. The main objective of the present study is to summarize the application of SCADA data to fault detection in wind turbines, analyze its advantages and disadvantages and predict the potential of future investigations on the use of SCADA data for fault detection. Design/methodology/approach The authors first review the means of WT CM and summarize the characteristics of CM based on SCADA data. To ensure the quality of SCADA data, data preprocessing methods are analyzed and compared. Then, the failure modes of the key components are discussed and the SCADA data used for fault detection of each component are compared. Moreover, the fault detection methods for WT are classified and a general framework for fault detection is proposed. Finally, the issues in the WT fault detection method based on SCADA data are reviewed. Findings Based on the performed analyses, it is found that although the fault detection accuracy based on SCADA data is relatively poor, it has low capital expenses and low computational cost. More specifically, when there is scarce fault data, the normal SCADA data can be used to detect the fault time. However, the specific fault type cannot be identified in this way. When a large amount of fault data are accumulated in the SCADA system, it can not only detect the occurrence time of the fault but also identify the specific fault type. Originality/value The main contribution of the present study is to summarize the pre-processing methods for SCADA data, the data required for fault detection of key components and the characteristics of the fault detection model. Then we propose a general fault detection framework for wind turbines based on SCADA data, where the maintenance workers can choose the appropriate fault detection method according to different fault detection requirements and data resources. This article is expected to provide guidance for fault detection based on time-series sensor signals and be of interest to researchers, maintenance workers and managers.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3