Signal Timing Optimization Model for Intersections in Traffic Incidents

Author:

Wang Jiawen1ORCID,Hang Jiayu1,Zhou Xizhao1

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China

Abstract

The intersection control and management can alleviate the traffic congestion caused by traffic incidents. Therefore, it becomes essential to develop a signal optimization method for intersections influenced by traffic incidents, which will be beneficial to prevent congestion spreading. In this paper, the proposed model is capable of maximizing the intersection throughput by comprehensively considering the queue length as the penalty value. The headway of leaving vehicles is assumed to follow the Cowan’s M3 headway distribution, where formulas for queue length can be derived based on gap acceptance theory. To satisfy the conditions for efficiently identifying feasible solutions in a short time, a heuristic algorithm (simulated annealing algorithm) is employed to solve the model. The numerical results can validate that the proposed method can solve the problem more efficiently and alleviate the intersection congestion caused by the incidents more desirably. When the incident occurs away from the intersection stop line, the impacts on intersection throughput will be gradually weakened. The proposed method is capable of improving the signalized intersection throughput while preventing the congestion from spreading to the upstream intersection.

Funder

Shanghai Sailing Program

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3