Real-Time Incident-Responsive Signal Control Strategy under Partially Connected Vehicle Environment

Author:

Chandan Kancharla K. K.1ORCID,Seco Álvaro J. M.2ORCID,Bastos Silva Ana M. C.2ORCID

Affiliation:

1. Centre for Territory, Transport and Environment (CITTA), Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal

2. CITTA, Department of Civil Engineering, University of Coimbra, Coimbra 3030-788, Portugal

Abstract

The performance of the traffic system can drastically drop when nonrecurrent congestion caused by incidents occurs. Early detection and clearing of traffic incidents will enable the mitigation of the congestion and early restoration of normal traffic conditions. The research in this paper utilized the vehicle information from the recent technological advancement in transportation systems, connected vehicles (CV), and loop-detector information for nonconnected vehicles (NCVs) and developed a novel algorithm to (1) control traffic signals for normal traffic conditions in the absence of incidents, (2) detect traffic incidents using CV/NCV information, and (3) control traffic signals during the occurrence and dissipation of incidents. All the 3 strategies were integrated into one algorithm, which runs as per the real-time traffic conditions, in the presence or absence of incidents. Space-mean speeds of the vehicles on nonincident lanes and throughput maximization criteria were taken as the indicators for the activation of specific signal timings directed at the incident-affected approach. Diverse incident scenarios were tested on a four-legged isolated intersection using the VISSIM simulation tool. Incident detection results showed a higher detection rate and lower mean detection time at higher CV penetration and higher traffic volumes, and at the incident locations nearer to the stop-line. The proposed incident-responsive signal control strategy at 40% and higher CV penetration showed better performance over EPICS adaptive signal control solution, in reducing average travel time delay and the average number of stops per vehicle.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative Incident Management in Mixed Traffic of CAVs and Human-Driven Vehicles;IEEE Transactions on Intelligent Transportation Systems;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3