Wet Modal Analyses of Various Length Coaxial Sump Pump Rotors with Acoustic-Solid Coupling

Author:

Peng Guangjie12,Zhang Zhuoran1,Bai Ling1ORCID

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China

2. State Key Laboratory of Hydroscience and Engineering, Beijing 100084, China

Abstract

The dynamic characteristics of the rotor components were determined using a first-order modal model of the rotor components for various sump pump shaft lengths for actual working environments. By employing ANSYS-Workbench software, this paper uses a fluid-solid coupling analysis to calculate the reaction forces of the fluid on the rotor with results, which is then used in dry and wet modal analyses of the rotor parts to calculate the vibration modal characteristics with and without prestresses. The differences between the wet and dry modal characteristics were compared and investigated by ANSYS. The results show that increasing the sump pump shaft length reduces the first-order natural frequency of the prestressed rotor components. The structure also experiences stress stiffening, which is more obvious in the high-order modes. The natural frequency of the rotor in the wet mode is about 16% less than that in the dry mode for the various shaft lengths due to the added mass of the water on the surface which reduces the natural frequency. In the wet modal analysis, when the structure is in a different fluid medium, the influence of its modal distribution will also change, this is because the additional mass produced by the fluid medium of different density on the structure surface is different. Thus, the wet modal analysis of the rotor is important for more accurate dynamic analyses.

Funder

State Key Laboratory of Hydroscience and Engineering

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference25 articles.

1. Interstage difference of pressure pulsation in a three-stage electrical submersible pump;Y. Yang;Journal of Petroleum Science and Engineering,2020

2. System performance analysis of a hybrid ground source heat pump with optimal control strategies based on numerical simulations

3. Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump

4. Process simulation of Chemical Looping Combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers

5. Vibration in a multistage centrifugal pump under varied conditions;L. Bai;Shock and Vibration,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3