Fault Diagnosis of Intershaft Bearing Using Variational Mode Decomposition with TAGA Optimization

Author:

Tian Jing1ORCID,Wang Shu-Guang2,Zhou Jie3,Ai Yan-Ting1,Zhang Yu-Wei1,Fei Cheng-Wei4ORCID

Affiliation:

1. Liaoning Key Laboratory of Advanced Test Technology for Aeronautical Propulsion System, Shenyang Aerospace University, Shenyang 110136, China

2. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

4. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China

Abstract

To efficiently extract the features of aeroengine intershaft bearing faults with weak signal, the variational mode decomposition (VMD) method based on the tolerant adaptive genetic algorithm (TAGA) (TAGA-VMD) is proposed by introducing the idea of tolerance into the traditional adaptive genetic algorithm in this paper. In this method, the tolerant genetic algorithm was adopted to find the optimum empirical parameters K and α of VMD. A fault simulation experiment system of intershaft bearings was built for the inner ring fault and outer ring fault of bearings to verify the proposed TAGA-VMD method. The results show that the proposed method can effectively extract the fault feature frequency of intershaft bearings, and the error between the extracted fault feature frequency and the theoretical value of fault frequency is less than 0.1%. The efforts of this study provide one promising fault feature extraction approach for aeroengine intershaft bearing fault diagnosis with weak signal.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3